14-09-2020
325

(几何与拓扑研讨班持续更新)双曲几何与低维拓扑联合讨论班

报告1:

题目:The Mcshane Identity

主讲人:冯可 副教授 (电子科技大学)

时间:  2020年9月16日,周三,19:00-21:00

会议号:70493356795

密码: 123456

简介:I will introduce the proofs of the Mcshane identity for one cusped sphere,including  Mcshane's idea and Bowditch's.

讨论班简介:本讨论班由人大,北大,复旦,电子科大,华中科大等多校联合组成。研讨内容既有双曲几何、低维拓扑领域的前沿热点问题,同时也涵盖三维几何拓扑的基础理论,旨在培养几何拓扑方向的青年教师、博士后及研究生。

报告2:

题目:The space of hyperbolic manifolds and the volume function(1)

主讲人:靳晓尚(华中科技大学)

时间:  2020年9月24日,周四,19:00--21:00

Abstract: In this seminar, we will study the following two things: --the topological structure on the space 'Hn' where 'Hn' is the set of all n-dimensional complete hyperbolic manifolds up yo isometry,--the properties of the volume function 'vol' on the space 'Hn'. Reference: Riccardo Benedetti, Carlo Petronio, Lectures on Hyperbolic Geometry, chapter E.

报告3:

Speaker: 靳晓尚(华中科技大学)

Time: 10月8日,周四,19:00--21:00

Title: The space of hyperbolic manifolds and the volume function(2)

Abstract: In this seminar, we will study the following two things: --the topological structure on the space 'Hn' where 'Hn' is the set of all n-dimensional complete hyperbolic manifolds up yo isometry,--the properties of the volume function 'vol' on the space 'Hn'. Reference: Riccardo Benedetti, Carlo Petronio, Lectures on Hyperbolic Geometry, chapter E.

报告4:

Speaker: 沈良明 副教授(北京航空航天大学)

Time: 10月15日,周四,19:00--21:00

Title: Complete Calabi-Yau metrics on Quasi-projective manifolds

Abstract: We first review the results of Tian-Yau on the construction of complete Ricci flat metrics on quasi-projective manifolds. Then we will summerize some works on this aspect since Tian-Yau. Finally we will talk a bit about some recent progress.

报告5:

Speaker: 李畅 (中科院数学与系统科学研究院)

Title: A characterization of compact convex polyhedra in hyperbolic 3-space

Abstract: In this seminar, we study the extrinsic geometry of convex polyhedral surfaces in three-dimensional hyperbolic space. We obtain a number of uniqueness results, and also obtain a characterization of the shapes of convex polyhedra in H^3 in terms of a generalized Gauss map. This characterization greatly generalizes Andreev's Theorem.

Reference: I. Rivin and C. D. Hodgson, A characterization of compact convex polyhedra in hyperbolic 3-space, Invent. Math. 111 (1993), no. 1, 77–111.

分享
 

邮编:100872

电话:010-62515886

传真:010-62513316

E-mail:mathruc@ruc.edu.cn

地址:北京市海淀区中关村大街59号中国人民大学数学楼

威尼斯游戏网站公众号

版权所有 威尼斯游戏网站_威尼斯正版官方网站 升星提供技术服务